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CONTINUITY A N D  kTH O R D E R  
DIFFERENTIABILITY IN O R L I C Z - S O B O L E V  

SPACES: WkLA 

BY 

JACK D. KORONEL 

ABSTRACT 

The paper gives a necessary and sufficient condition for the embedding of the 
Orlicz-Sobolev space W~LA (f~) in C(1)). The same condition is also found to be 
necessary and sufficient so that a continuous function in W~LA (fl) be differenti- 
able of order k almost everywhere in 1). 

Introduction 

Let 1"~ be a bounde d  domain  in R".  The  Or l icz -Sobolev  space WkLA (~-~) is the 

set of all functions u in the Orlicz space LA (~)  such that  the distributional 

derivatives D au are conta ined in La ( f / )  for all a with l a I_- < m .  For  the 

definition and basic proper t ies  of Orlicz spaces, the reader  is referred to [5]. The  

notat ion in this paper  follows the one in [2]. 

The first result of this paper  concerns  condi t ions  for the embedd ing  of 

WkLa (~'~) in C(fl) ,  the space of  cont inuous  functions in lq. E. A.  Rozenfe l ' d  

showed in [8] that  a necessary and sufficient condi t ion for WILA(I'~) to be 

e m b e d d e d  in C(I ) )  is that  

fo 1A t "-~ dt < (t O9. 

We extend the above  result to the case k > 1: the necessary and sufficient 

condit ion for the embedding  ment ioned  above  to hold is: 

fo ' .4  (t k-") < oo. t , - l  dt 

�9 This result sharpens a theorem due to Dona ldson  and Trudinger  [2, theor.  
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3.9(b)] in which they gave a sufficient (but not necessary) condition for the 

embedding of WkLA (1~) in C(f~). 

The second result shows that a condition equivalent to the one that appears in 

the previous result, namely, 

ft| [-~(t)]k/'n-k)dt < oo 

is necessary and sufficient for a continuous function in WkLA to have a 

differential of order k a.e. This was proved for k = 1 by A. P. Calder6n in [1]. 

Our proof for k > 1 is in part a generalization of Calder6n's proof. In the case 

where A ( t )=  [t [P, the existence of a kth order differential a.e. was proved by 

Reshetnjak [7]. 

The results of this paper form part of the author's M. Sc. thesis. The author 

wishes to express his gratitude to Professor M. Marcus for his guidance and to 

Professor P. Saphar for his interest in this work. 

, 

The embedding result can be stated as: 

THEOREM 1. Let f~ C R ~ be a bounded open set with the cone property (see 

following lemma for definition). I f  A is an N-function such that: 

fo' (1.1) .A (t~-")t~- '  dt < ~ then: 

i) W~LA(~)  can be continuously embedded in C(II), 

ii) for each f E WkLA (1~), there exists a continuous [such that [ (x )  = f ( x )  for 

each Lebesgue point of f, and there]ore [ = f a.e., 

iii) supx ~n t [(x) l  <= c .  II f [[Wk'A �9 

The proof of the theorem makes use of the following two lemmas. A result 

similar to the one in the first of these can be found in [6]; our notation follows 

that of [6]. 

LEMMA 1.1. Let u E C7(~), where f~ C R ~ is an open set which has the cone 

property, that is for each x, there exists a cone 

F~ = { y : y = t o  -, O<-_t<T<-_~, I o - - o - x l < y ;  I , ~ l = l , ~ x l = l }  

such that x + F~x CO. (y and T depend only on f~). 

Then for x E / (  = supp u, u can be represented as 
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u(x) ,o,= fron,  x, D~u (x + " --Y-- d 

where hx (or) = h ((r - m)  and h E C7 is defined on a set isomorphic to a subset of 
Rn-l ,  s u p p h  C{o':[ tr r < 7} and such that: 

fr = [ ( -  1)k" (k - 1)!] -1 . h(o-)dtr 
~r [ <Z "y 

PROOF. Since u E CT(I~), for  x E / (  and It r -  t rx[<  3': 

~tk-l d-~.k u(x t t r ) d t = ( - 1 ) k ( k - 1 ) ! u ( x ) .  
fo d~ + 

After  multiplying both  sides by hx and integrating over  I tr - ~x I <  % we get: 

f fo hx (o') t k-1 dr  . . . .  I<, ~ u  (x + ttr)dt = u (x). 

Now, by the change of variable y = t �9 or and keeping in mind the fact that: 

D~u(x + y ) ~ O  ~ y E I?i- x 

we get the desired result.  Q .E .D .  

LEMMA 1.2. Let u ~ LA(fl), f l  a bounded set: 
i) If  u EL~ , ( l ) )={u[ f ,A (u (x ) )dx  < ~ } ,  K C ~  is compact, then: 

Ye > 0 3 8 ( e )  such that f rA( ] [u (x  + h ) -  u ( x ) ] ) <  e Y [ h l <  8. 

ii) If  u~ = u*], is the regularization of u, then u~ ~ u in the weak * topology 
o-(LA, L x )  as e--->O. 

REMARK. Part  (ii) was proved  in [4]. H o w e v e r  it can be ob ta ined  also as a 

consequence  of part  (i). 

PROOF. 

i) If V is bounded  f r  A (v (x + h) - v (x))dx ~ 0 as I h t---~ 0. Now each u E L 

can be writ ten as u = v + g where  v is bounded  and J A(g(x))dx < e/3 for  a 

given e > 0. The re fo r e  by convexity:  

f r  A (  u (x+ h ) - u ( x ) )  dx <l  f r  a ( v ( x  + h ) - v ( x ) ) d x  +] f r  3 = ~ A (g (x + h))dx 

fK 3 e ~  +~ A(g(x))dx < + 5 + 5  = e .  

ii) Given  w ~ Lx and t9 > 0, by Young 's  inequal i ty  we have:  
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fK [u(x + h ) -  u(x ))] w(x )dx <= P fK A(u(x+h) -u (x ) )  

\ P / 

Both terms on the right hand side tend to 0, the first one because of (i) and the 

second one by the definition of an N function. The assertion is a consequence of 

the above inequality using arguments similar to the one in the proof of Theorem 

1 below. 

PROOF OF THEOREM 1. For k > n, the result follows from Sobolev's embed- 

ding theorem and the fact that WkLa C W~a, this embedding being continuous. 

Therefore  let k =< n (see [3]). 

Let f E W~LA(fl), K C1~ compact and 0 <  eo<d i s t (K ,  al l ) ;  there exists a 

function ~ E C| such that: 

~/---1 on K~o={Zl3yEK:[z-yl<=eo} and s u p p T / = K 1 C l ) .  

Denote  g = f .  r/; then Dag E La for I a [ =< k. In order to prove (i) we shall 

show that g is equivalent to a continuous function defined on K. 

Let 0 <  e,, e2< dist(Kl, Ofl), x ~ K;  let us define the regularizations &, = 

g*j~,, i = 1, 2. By using Lemma 1.1 for g,, - g~ which has its support in a compact 

set / ( C ~ ,  and using the fact that h has bounded support: 

(1.2) [g.l(x)-g~(x)[ <=C" E fr [ D;.,(x+y)-D~,.(x+y)[ lylk-"dy 
I ~ , l = k  o n ~  R-x) 

<=c" ~ ~Sr ID:"(x+y)-D~(x+Y)I lYlk-"dY 
I k i = l  o n  (R-x) 

<- c ~ D~(z - x [k-"dz. " o ~ , = , S R  ID~.,(z) - )l Iz 

~ a 

Now since D g , =  (Dg),, 

f lD~,(z)-D~(z)l Iz-xlk-"dz 
R 

S, foID"g(z - u ) -  D"g(z)IJ '(u)du "[z - x[ a'-'dz 

Now let l u ] < e,, and let us consider the inner integral; by Young's inequality 

(for P > 0): 
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f ID"g(z-u)-D~g(z)[ Iz-xlk-"dz R 
=3p ( [D"~(z-u)-D"~'(z)llz-xlk-"dz 

3 ~c 3 p 

<=3Pfe:a(D"g(z-u)-D~g(Z))dz+3Pf3 ~ ( [ z -  ; Ik-" )dr. 

Let e > 0  be given, then we can find a 8 > 0  such that f~oA(t~-")t"-'dt< 
e/12w.-~ where oJ.-1 is the surface area of the n-dimensional unit ball. Since A, is 

an N-function for this 8 > 0 we can find a p > 1 such that 

p X, < 12w._~R" 

whereR > 0 (which depends on K)  is such t h a t / ( -  K _C B(0, R);  and thus by 

the convexity of ft.: 

x dz 3pf,  (Iz o 

C' /tk-"\ fa R (k-L_~_) 
~ 3pco.-1Jo + 3o,o._, t - - 'at  

fo ~ .- /8 k- . \  < 3W.-, .4(tk-")t"-'dt+3Oco.-,A~--f--JR " 

E E E 

Now by use of Lemma 1.2 (i) we can find an e * > 0 such that for I u I < e *: 

3o f , A (D~g(z - u) - D"g(z)) < e_ 
3 2" 

So that on the whole for 0 < e~, e2 < e*: 

[ g., ( x ) -  g.2(x)[ < 2n~ce. 

By taking the sup on K, we find that {g~} is a Cauchy sequence in C(K) and 

therefore there exists a continuous function f such that f = f a.e. 

Now since g~ (x)--* g(x) for each x which is a Lebesgue point of f, we get (it). 

By using Lemma 1.1 for g~ we have as in (1.2) 

Ig,(x)l<=c ~=k ~ [D"g(z)I Iz-xlJ'-"dz. 

Since [ z - x t *-" E Lx by use of Lemma 1.2 (it), letting e ~ 0, we get: 
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Ifl(x)r<--c ~, fo ID=g(z)l Iz-x[k-"dz 
p,~ l=k 

and by use of a known inequality in Orlicz spaces (see [5]) 

_-<c Y, IID~gIIA max(1, fn , ~ ( I z - x l k - " ) d z )  
I,~l=k 

and for bounded l l  we get: 

sup I/~(x)l -< Cl II u II WkLA (fl). 
x E f l  

Israel J. Math. 

Q.E.D. 

. 

In this section we compare the embedding result of Donaldson and Trudinger 

[2, theor. 3.9(b)] with Theorem 1 of the present paper. We shall show that their 

condition for the continuous embedding WkLa(fl) '--) C(I-I) implies that of 

Theorem 1 and that in fact there exist functions satisfying the condition of 

Theorem 1 but not that of [2]. 

We assume below that k < n; for k -> n by Theorem 1, WkLa(fl) can be 

continuously embedded in C(fl). (See [3].) 

First, we recall the condition given in [2]. For a given N-function A an integer 

q (A) and a sequence of N-functions Co, C~,. �9 Cq are defined by the formulas 

= fx c:'_,(t) C;'(x) tl+v. dt Jo 

Co(x)= A(x ) .  

Assuming f~ (C;~(t)/t ~+'/") dt < w for v = O, 1, . . . ,  q, q(A)  = q < n + 1, is such 

that 

c: , (o  fo ~ c '(od, t,+,/, ~,, = ~ but t l + l / n  < O0 �9 

The condition given in [2, theor. 3.9(b)] for the continuous embedding 
WkLa (f~)c_.) C(12) is: 

(2.2) k > q (A) .  

We show now that this condition implies condition (1.1) of Theorem 1, 
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fo C~'(t) . C~-,(s) dt 
ll+l/n at=fo~ ' sl+,ln dst,+v. 

fo| (s | dt C~-,(s) fo| C~[,(s) (2.3) = , t,+,:, s,+,/, ds = n s,+2/, ds 

= n . fo  ~ A-'(s) ds S l+(q+l)/n 

k and q being integers; k > q f f  k => q + 1. Therefore from (2.1) and (2.3) it 

follows that: 

fo A- l ( s )  ds < oo S 1+kin 

and by Young's inequality s <=4 ~(s)A-'(s)<=2s we get 

fo ~ ds < ~ 
_,(s)sk,. 

(2.4) 

On the other hand 

(2.5) fo' ~ ~ A ( r  . 
(tk-")t"- '  dt = C r~+k/,._k)ar 

= cf~(,, s .~-'(s)). [fi-,(s)]Z+'/<--k, d( 

Since the integrand in (2.4) is decreasing, Abel's theorem implies that 

lim _ s - 0 .  

s ~  A - l ( s ) s  k/" 

In particular, for large values of s: 

S 1--k/l~ ~ 1~ --I(s ). 

Therefore for sufficiently large So: 

(2.6) [.~_,(s)l,+k/r = A- ' (S)  skI" 
< o o .  

In view of Abel's theorem (2.6) implies that 

S 
(2.7) iim.~ [~_,(S)],+k/,._k ) = O. 
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Finally, (2.6) and (2.7) imply that the last integral in (2.5) converges. This can be 

seen by integration by parts. We have thus shown that (2.2) implies (1.1). 

We shall now consider an N-function A (t) such that for large values of t 

A ( t )  = t n/k (log t)" where ~ ' < T n  - k =<~_.n 

We shall show that A (t) satisfies (1.1) so that the embedding W k L A  (f~)~--~ C( f~)  

is continuous while the condition (2.2) of [2] is not satisfied by A (t). 

For A as above, the function A complementary to A is equivalent to the 

N-function which is equal to t"/t"-k)(log t) "k'tk-") for large values of t. (See [5, p. 

65].) Without loss of generality, let us assume that / 7, is equal to the above 

function. It follows that for sufficiently small to: 

fo t~ -- A (t k - " ) t  n- l dt  = c �9 [(log t k-. )(~. k/(k-~))+l]o. ~ 

The above integral converges for 7 > (n  - k ) / k .  Thus A satisfies (1.1) for these 

values of 3'- 
However  for the same values of 3', q(A)_-> k since 

f o f ;  s At '+k/n-'(t) dt  = -1(1 ) [A (s)] '§ d ( A  ( s ) )  

ds 

(2.8) 

diverges. Indeed 

diverges for y <--n/k,  and 

as 
- s(log s),.k/~ 

s 1 
lim~_| [A (s)lk,. -!imp| (log S),.E/, = 0. 

Thus, integrating by parts (2.8), we get: 

t1+1/~ dt = oo. 

It has thus been shown that q ( A ) ~ ,  k and therefore in this case, the criterion in 

[2] cannot applied. 

. 

The following lemma is similar to Lemma 1.1 and is proved in a similar way. 

We state it here without proof. 
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LEMMA 3.1. 
for each x ~ B (Xo, R ') 

(3.1) u ( x ) =  ~] f~ 
l a l = k  y l x + y E B ( x o ,  R ' ) }  

ORLICZ-SOBOLEV SPACES 127 

I f  u is infinitely differentiable such that supp u C B(xo, R ') then 

D~u(x  + y),-Q,,  h(,-J-Ti)dy 
lYI" \ I Y l /  

where h E C7(S.-,) and fl<=, h(~r)&r = [ ( -  1) k (k - 1)!]-'. 

The next assertion is an extension to the case k > I of a lemma of Calder6n 

[11. 

fo[w] LEMMA 3.2. I f  A is an N-function such that k/("-k)dt < ~, then 

(3.2) f. (f. u ( Y ) l Y - x l k - " d y < = C  �9 A(u(y) )dy  

where u >= 0 and K is measurable. 

PROOF. Let E,. ={y E K t 2 "  ~u(y)_-<2"+l}. 

Then: 

fK u(y) l  y - x lk-"dy 

=< 2m+', E= l Y - x I k-"dy _-< | 2" +~ l Y - x I ~-"dy 
m = - ~  m ( x , r )  

where r = (IE,, I/co) '/", IE., I = measure of E,., co =vo lume  of the unit ball 

f '  2 n  , - k / .  ~' = no) ~ 2 " + ' /  Pk-~dP = - - c o  2-, 2= I E" 
m=-~  ao k m=~| 

= c ,  ~ 2 " I E , . I  k/" A(2")k'" 
. . . .  A (2")k'" 

--<c, ( , .~_ '  E,. IA (2")) k'" (,.__~_~ (A (2~,k,.)""" k)) r 

Now, since A is increasing: 
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2""" I " " - ' <  " [2"+"""I '" ' -" 
A----~-~ J = f.,-1 [_'-A-~~ J ds 

 a-g j( 2""' l"('-" = f'-. L[-2""" 3 

f- -, , - l--0-gg2 Jo t A ( t ) ]  dt=c2<~176 

ds 

and from here the result follows. 

By making use of a known lemma (see [9] for a more general version) and the 

fact that (D~u),  = Dau, we have: 

LEMMA 3.3. Let f l  be a bounded domain, and let u E Wl.l(f~) have distribu- 

tional derivatives D ~u for I a I = k. Let us denote : 

II(,) = {x E [ l  I dist (x, a l l )  > e}. 

For x ~ fl(,), let u, (x ) = u *], (x ). I[ A : R ---> R § is convex and continuous then : 

i) (_ A ( D ' u ~ ( x ) ) d x  <= (_ a ( D ' u ( x ) ) d x  e > 0  
rill 

ii) l imfn A ( D ~ u ~ ( x ) ) d x =  fn A ( D ' u ( x ) ) d x .  
e~O (,) 

THEOREM 2. Let f E LIon(R") be a continuous function such that its distribu- 

tional derivatives Da f  ~ LA (K)  for [a [ = k < n and for each compact K C R", 

where A is an N-Junctions for which 

[" [ t ] k'("-') 
(3.3) 31 I A - - ~ J  a t  < oo. 

Then f has a kth order differential a.e. in R", that is for almost every x: 

f ( x  + h ) - f ( x )  - ~ (O ~'[) (x)  h ~' o<,a,~ a!  = o ( I h l ' )  as I h l ~ 0 .  

PROOF. Let x ~ R", we shall show that f is differentiable of order k in x 

which is outside a set of measure zero which shall be fixed later. 

First of all, without loss of generality we may suppose that 

fo[t/A(t)]k/("-k)dt < % since otherwise we can take an equivalent N-function 

for which the above assumption holds. 

Secondly, we suppose that: 
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fB A (D ~f(y )) dy < oo, [ a [ = k 
(x,2) 

129 

for otherwise we may consider 

L= f 
E II 

I,~l=k 

Now, our first aim will be to show: 

(3.4) ]f(x)l<-c �9 ~ A(D"f(y))dy 

where S = B (Xo, R), R < 1 is a ball which contains x. (For discontinuous f, this 

inequality would be true only for those x which are Lebesgue points of f.) 

Let us define a sequence of functions {f,.} such that: 

f=f, .  on S(..={xES[dist(x, OS)>l/m} 

and such that suppfi. Cint S~,,§ C S. 

Let us denote S~ = {x [3y ~ S:[x -  y ]< e} and define: 

f,.,(x)= j*f,.(x)= f~_,p<_~ f,.(y)j~(x - y)dy  

then supp f,,~ C (supp f,, )~ C (S ~,~ +,)~ = B (x, R ') where R '  = R - (1/(m + 1)) + e. 

From (3.1): 

"l~kJ~y,x+y~supp:.., ]D'~fm~(x + y)[ [ Y ]k-"dY I/m,(x)l<-_c 

(3.5) <-C~ ( [D~f,.~(z)llz-xl~-"dz 
dal=k J(s(~+l))~ 

= C ,  • A D ~ ~(y) dy from (2.2). 
dal=k s(~+1)). 

W e  shall now estimate the limit of the right hand side when e ~ 0 a n d  m ~ oo. 

Let: 

= 11+12. 
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For f, = f*j, and z E B(xo,  R - (1/(m + 1 ) ) -  e) ,  by definition: 

ID(f,,,, - f~)(z)] <= fz-yr [D';j,(z - Y)I If,~(y)- f(y)lay 

<=~--~lfs If,,,(y)-f(y)]dy =c(e) r ]f,,(y)-f(y)ldy. 
(re+l). J S(m+l)\S(m) 

Therefore, D~f~,,(z)_-__ D'f~(z) + ~(e,m) where lim,,~| m) = O. 
So, by the convexity of A, 

I~ < - ~ [  A(D"f~(z))az +�89 ]B(xo, R)l 
J B  (xo, R- - ( l / (m + l ))--e ) 

<=�89 e(o'~f,(z))dz +�89 IB(xo, e)]. 
(xo, R-~) 

By Lemma 3.3, the first term on the right hand side is bounded by and 

converges to: 

�89 fB,~o,R) A(Daf(Y))dY" 

The second term obviously -->0, when m-->oo, so that 

11 _-- �89 f A (D ~f(y)) dy. lim 
m ~  J B (xo,  R ) 

Let us consider now: 

where P~ ={R - (1 / (m + l ) ) - e  <IY -Xol<R - (1 / (m + l ) ) + e }  and let us 
choose Q such that: 

Qt~= {x E Q [dist(x, d Q ) >  e}= P, 
that is Q = { y l R - ( 1 / ( m + l ) ) - 2 e < l y - x o l  < R - ( 1 / ( m + l ) ) + 2 e } .  

Then according to Lemma 3.3: 

Iz=fo,, ' A(D"f2(Y))dY<=fo A(D~'f~(Y))dy 

and from our choice of Q we get: lim,~oI: = 0. 
Therefore, we can choose subsequences mk--->oo and ek--->0 such that by 

passing to the limit in (3.5) we get (3.4). 
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Now, for x ,x '~  R" such that I x -  x'  I = R < 1, we take a ball B(xo, R) which 

contains them and from (3.4) we get: 

(3.6) If(x)-f(x')[<-C, ~ (J. 
lat=k (Xo,R) 

A (O ~f(y)) dy) ~'" 

~, (D'~f(Y))dY) _-<C, pk(L,~.za, A k/. 

The rest of the proof follows from the fact that in the same way as Calder6n 

showed it for [a  [ = 1 in [1], we have for almost every x: 

lim , . .  1 ( 
R~om~t~(x,2R )) JB(x.2R) 

So that by defining: 

g(y)= f ( y ) -  f ( x ) -  

and using (3.6) for g we get: 

Ig(x')l:lg(x)-g(x')[<=c~ ~ (fB 
I,~l=k (x,2R) 

Thus 

A (O ~/(y) - O " f ( x ) )  d y  = O, 

(D~f) (x) (y - x) ~ 
a !  

< - - _ c 2 R k E ( 1 L  
I~l=k m(B(x,2R)) (x,:R) 

Io, l=k.  

k / n  

A (D af(y) _ D af(x)) dy) 

\ k,n 

A ( D a f ( y ) -  Daf(x))dy)  . 

I g(x')f 
[x_x, l , ,~O as x'--*x 

which means that f has a k th order differential at x. 

From Theorems 1 and 2 we get the following result: 

Q.E.D. 

and then the corollary follows by taking the continuous representative of 

Theorem 1 and applying Theorem 2 on f. 

First, we assume that A satisfies (1.1). From (2.5) it follows that 

fo' f, (1.1) A(tk-")t  "-'dt < oo r (3.3) [A (t)J dt< oo 

PROOF. We shall show that for an N-function A:  

COROLLARY 1. If ~ and A are as in Theorem 1 and if k < n then each 
equivalence class in WELA (l)) has a representative f which is differentiable of order 
k a.e. in lq. 
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fo' (3.7) ,Xi ( tk- ' ) t"- '  dt = c" s" d ([A-'(s)l"/(k-")). 
(1) 

Now, if ]' is a positive and nonincreasing function and if 

lim f (s)  = 0 

the convergence of the integral fTosd[(s) implies that lim,_| 0. This can 

be proved in the same way as Abel 's theorem. 

Therefore, we may integrate by parts the second integral in (3.7) and thus 

conclude that (1.1) implies 

(3.8) [/~- '(s)l  "/<k-") ds < oo. 
(1) 

Recalling Young's inequality, we get 

(3.9) f.~i) [A~s S ]"'("-k)ds < ~.  

Using Abel 's  theorem in (3.9) it follows that 

(3.10) lim s �9 = lim A-~(s) = 0. 

We have used here the fact that t /A (t) is a decreasing function of t ([5, p. 8]). 

Thus, 

(3.11) fl| [A-~(t)] ki("-k'dt = fA~,)[A~sS]ki("-k)d(A-i(s)) 

- n - k [~ ] k i ( ~ -~ )A - ' ( s ) ]  | -t---k f | [A-s-~-~--)-]"i("-')ds. 
n _1 A(1) /'l . /A ( i )  

From (3.9), (3.10) and (3.11) we obtain (3.3). We have thus shown that (1.1) 

implies (3.3). 

Now, if we assume that A satisfies (3.3) from (3.11) we get (3.9) or equivalently 

(3.8). (1.1) follows in view of Abel 's  theorem from (3.7) and (3.8). 

. 

Rozenfel 'd has constructed an example of a function showing that Theorem 1 

is sharp for k = 1. We shall now construct a function showing that condition (1.1) 

is sharp for all k. Rozenferd 's  construction in [8] cannot be generalized to the 

case k > 1; however Lemma 4.1, which describes the first step of the construc- 
tion, is a lemma of Rozenfel'd. 
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LEMMA 4.1. Let A be an N- funct ion  for which 

fo' (4.1) ~ ( t k - " ) t " - l d t  = oo. 

Then for each a > O, e > 0 and p > 0 there exists a nonincreasing and nonnegative 

function ga.~,p(t) E C k such that g~,E.p(O) = a ; g~!E,p(p ) = O, 0 < i <= k - 1 and 

fo p (k) t.-1 A (g,,~,p(t)) dt < oo. 

PROOF. First, it is enough to prove the lemma for p = 1. Next we define 

fo 1 S ( ~ ) =  inf A(g(~)( t ) ) t~-~dt  
gETp~ I 

where T~ is the set of all nonincreasing and nonnegative g E C k such that 

g ( 0 ) = a ;  g~ 0 ~ i _ - < k - 1 .  

S ( a )  is a convex function. By using an argument similar to the one in [8] and the 

fact that for g E Tl~ I we have 

fo ~ g ( k ) ( t ) ( -  1) k (k - 1)! a tk-I dt 

it can be shown that the conjugate function is: 

~ ( p ) =  {0 p = 0  

p ~ 0 .  

This implies that S ( a ) =  ~(a)- - -0  as required. 

REMARK 4.1. The function g~,,,p(t) can be extended to the interval [0, 1] as 
zero for p < t _-< 1. Denoting by ~ ~,~.p(t) the extension we have ~ ~,~.p ~ CE-~(O, 1), 

dk-I 
dtk_ ~ ~,~,~,p is Lipshitz 

~,~,p(0)=a,  ~a,~.p(t)=0 for t>=p 

and 

o ~ A(~ ,~ .p( t ) ) t " -~dt  < e.  

LEMMA 4.2. Let  g E C ~(0, 1) be such that 

g(1) = g'(1) . . . . .  g(k-"(1)  = O. 
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Then for v = 0, 1 , . . . ,  k - 1 and the N-Junction A : 

fo I fo (4.2) A(g~V)(t))t"-'dt <= (n - 1) k-v A(g(k~(t))t"-'dt" 

PROOF. It is enough to prove the lemma for k = 1. By hypothesis 

g(t) = f '  g'(s)ds. 

From the convexity of A it follows that for 0 < t < 1 

A(g(t))<=(1-t)A(1-~_tt)<= f 'A(g'(s))ds<= 1 ( 'A(g ' (s))ds .  
t3, 

Thus 

/o' /o'f' A(g(t))t"-ldt <= A(g'(s))dst"-2dt 

fo'fo 1 fol = t"-2dtA (g'(s))ds = n - 1 A (g'(s))s "-~ ds. 

Q.E.D. 

Let us denote by Ea (11) the closure of the bounded functions in La (l-l) induced 

by the norm topology of LA (l-l). (See [5] for the basic properties of EA (fl).) The 

Orlicz-Sobolev space WkEA (1"~) is defined in the same way as WkLA (fl) with LA 

replaced by Ea. 

In the following, we shall need a theorem concerning the extension to R"  of 

functions belonging to an Orlicz-Sobolev space in a specific domain B. We shall 

bring here Stein's version of the extension theorem [10, p. 181, theor. 5]. Stein's 

theorem deals with Sobolev spaces but its proof can easily be applied to 

Orlicz-Sobolev spaces of type WkEA. The result is restricted to WkEa because 

C| is dense in WkEA(I'I) [2, p. 56] but not in W~LA (It). 

STEIN'S EXTENSION THEOREM. Let B be a domain with a bounded Lipshitz 
boundary. Then for each [ E WkEA (B ) there exists an f E WkEa (R ") such that 

f f x ) = f ( x )  [or x ~ B  
(4.2) 

I I f  c II 

Moreover if [ is continuous and bounded in B then so will be f in R" and 

(4.3) max It(x)l  --< max I f (x ) l .  
x E R  n x ~ B  
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REMARK 4.2. If OB can be divided into N parts such that in each of them the 

boundary can be represented by a Lipshitzian function, then the constant c in 

(4.2) depends only on k , n , N  and the maximum of the Lipshitz constants 

corresponding to the N parts. 

THEOREM 3. Let l-I be a domain in R ". Then a necessary condition that 
WkLa (fl) be embedded in C(I])fq L| is that 

fo ' ~ (tk-")t"-'  dt < oo. 

PROOF. We shall show that if A satisfies (4.1) then there exists a function 

belonging to W~La(R ") which is unbounded in every neighborhood of the 

origin. 

Let h,(t) = ~,.,~k+l).~/,(t) where ~.~,~ are obtained from Remark 4.1. Let 

(4.4) B = { ( x , , . - . , x , ) 1 0 <  x 2 , ' " , x ,  < x~,0< x, < 1} 

and for x E B let us consider 

F /  ( X l ,  ~ ", Xn) = h i ( X l ) ,  

Then for v = 0, 1 , . . . ,  k - 1 

L fo'fo x fox ~l= A(D'F~(x) )dx  . . . .  A(hlV)(xO)dx2 "" "dx,dx~ 

1 
k + l '  

(4.5) 

--fo 1 ~o' 1A (h}~)(Xl))X;-~dxl <- (n - 1) k-v A (h}~)(t))t"-'dt < - -  

where we have used Lemma 4.2. Thus we get 

k 

= o~ l l  D'F,  IIA = E ,~,~ II D'F,  I1,, < a. II F, II"'LA,', ~o0 

Furthermore,  since the derivatives of h, are bounded, F, E W~Ea (B). Now let 

f ( x ) =  ~ E ( x )  
i=l i: 

Since F~ => 0 is continuous at the origin and F~(O)= i, obviously 

lim f (x )  = oo. 
x ~ 0  

On the other hand, f is the limit of a Cauchy sequence in WkEa(B)  since 
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Thus f E WkEA(B). Now, B is a Lipshitz domain and from Stein's extension 

theorem f can be extended to all of R ~ such that /~ U WkL,,,(R") and ~ is 

discontinuous and unbounded in the origin. Q.E.D. 

The following theorem shows that condition (3.3) of Theorem 2 is sharp. 

(4.6) [A  (t)J dt = oo 

then there exists a continuous function in WkLA(R ~) which is not differentiable 

(and therefore not differentiable of order k) on a set of positive measure. 

PROOF. From the equivalence of (1.1) and (3.3) (see proof of Corollary 1) it 

follows that (4.6) implies (4.1). We can thus consider the functions 

h, (t) = g,'~,2/3)'.,/tk+,).l/4'v'a,(t) 

where ~..,p(t) are the functions we get from Remark 4.1. 

Let B be defined by (4.4) and let us consider the sets 

K , =  (x"'"'xn)l-4'V~n --xj<- 4'V~n' 1 < 

D ,  = R ~ \ ( K , \ B , ) .  

For x E D, we define the function 

F~(x" " " "' xn) = { h,(Xl) x E B ,  

0 x ~ R n\K,. 

Then F, >- 0, limx~0F~(x) = 4 'n (2/3)' and, fo.r lx I_- > 1/4', F~(x) = 0. Now, by 

making use of Lemma 4.2 and (4.5) we get 

II F, IlwkL~,o,, = , ~  II F, IIL~,o,, < 1. 

Moreover, by definition F, and its derivatives of order less than or equal to k are 

bounded which implies that F, E WkEA (D,). Therefore, by making use of Stein's 

THEOREM 4. 
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extension theorem, F, can be extended to R*. Thus we get the continuous 

functions g E W~EA(R ~) such that for each i 

II ~ IIw'LA, R~--<-- C 11 F, IIw'LA,",, -- C. 

The constant c is independent of i because the constant in Stein's theorem 

depends on the upper bound of the Lipshitz constants of the domain D~ and 

these constants are independent of i. 

Furthermore, 

and from (4.3) we get that 

(0) = 4" (~)' 

I~(x)l--<4 '" (3)'. 

Now, let x~, be the interior points of B such that their coordinates are integral 

multiples of 1/2' and let n~ be the number of such points in B. Clearly n~ < 2". 

We define 

Then 

(4.7) 

And by definition 

n~ 

G,(x) = ~ ~,(x - x~). 
h = l  

I x - x k l ~ l ~  ~ , ( x -  xk)= 0.  

Therefore for each x, at most one of the terms in the sum defining G,(x) is 

different from zero, and 

[ a,(x)l_-< 4'" (]) ' . 

Now let 

i=1  

First, the series defining f converges uniformly in R n and therefore f is 

continuous there. Secondly, f E W~LA(R~). Indeed, using (4.7) we have 

2 1 lim ~" II ~,  IIw~r �9 
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Finally, as it is shown in [1, p. 211], f is not differentiable on a set of positive 

measure and therefore not differentiable of order k on that set. Q.E.D.  

REFERENCES 

1. A. P. Calder6n, On the differentiability of absolutely continuous functions, Riv. Mat. Univ. 
Parma 2 (1951), 203-213. 

2. T. K. Donaldson and N. S. Trudinger, Orlicz-Sobolev spaces and embedding theorems, J. 
Functional Analysis $ (1971), 52-75. 

3. E. Gagliardo, Proprieta di alcune classi di funzoni in piu variabili, Ricerche Mat. 7 (1958), 
102-137. 

4. J. P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly increasing 
coefficients, Trans. Amer. Math. Soc. 190 (1974), 163-205. 

5. M. Krasnoselskii and Ju. V. Rutickii, Convex Functions and Orlicz Spaces, GITI'L, Moscow, 
1958; English transl., International Monographs on Advanced Mathematics and Physics, Hindustan, 
Delhi. 

6. J. L. Lions, Probl~.mes aux limites dans les ~quations aux deriv~es partielles, Les Presses. de 
I'Universit6 de Montreal, 1965. 

7. J. G. Reshetnjak, Generalized derivatives and differentiability almost everywhere, Math. 
USSR--Sb .  4 (1968), 293-302. 

8. E. A. Rozenfel'd, Conditions for the embedding of the function class W~G, A )  in the space 
C(G), Math. Notes 9 (1971), 371-377. 

9. J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. 
Soc. 101 (1961), 139-167. 

10. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton 
University Press, Princeton, N. J., 1970. 

FACULTY OF MATHEMATICS 
TECHNION--ISRAEL INSTITUTE OF TECHNOLOGY 

HAIFA, ISRAEL 


